PYTORCH PyTorch

AI-powered detection and analysis of PyTorch files.

📂 Data
🏷️ .pt
🎯 application/octet-stream
🔍

Instant PYTORCH File Detection

Use our advanced AI-powered tool to instantly detect and analyze PyTorch files with precision and speed.

File Information

File Description

PyTorch

Category

Data

Extensions

.pt, .pth

MIME Type

application/octet-stream

PyTorch File Format

What is a PyTorch file?

A PyTorch file contains serialized data from the PyTorch deep learning framework, typically storing trained neural network models, tensors, optimizers, or other machine learning artifacts. These files use Python's pickle protocol for serialization and are essential for saving, loading, and sharing machine learning models and training states.

File Extensions

  • .pt (PyTorch model/tensor file)
  • .pth (PyTorch model/checkpoint file)
  • .bin (Binary model file, sometimes used)

MIME Type

  • application/octet-stream

History and Development

PyTorch was developed by Facebook's AI Research lab (FAIR) and released as open source in 2017. The file format evolved alongside the framework to support increasingly complex model architectures and training workflows.

Timeline

  • 2017: PyTorch 1.0 released with basic serialization
  • 2018: Improved model serialization and JIT compilation
  • 2019: TorchScript for production deployment
  • 2020: Enhanced checkpoint system and distributed training support
  • 2021: Mobile and edge deployment optimizations
  • Present: Continued evolution with modern AI architectures

Technical Specifications

File Structure

PyTorch files use Python's pickle protocol with additional metadata:

# Basic structure of a PyTorch file
{
    'model_state_dict': OrderedDict(),  # Model parameters
    'optimizer_state_dict': dict(),     # Optimizer state
    'epoch': int,                       # Training epoch
    'loss': float,                      # Training loss
    'hyperparameters': dict(),          # Model configuration
    'metadata': dict()                  # Additional information
}

Serialization Methods

PyTorch provides several serialization approaches:

  1. State Dict Saving: Save only model parameters
  2. Entire Model Saving: Save model architecture and parameters
  3. Checkpoint Saving: Save complete training state
  4. JIT Script Saving: Save optimized models for production

Common Use Cases

Model Deployment

import torch
import torch.nn as nn

# Define a simple neural network
class SimpleNet(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, output_size)
    
    def forward(self, x):
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        return x

# Create and train model
model = SimpleNet(784, 128, 10)
# ... training code ...

# Save state dict (recommended approach)
torch.save(model.state_dict(), 'model_weights.pt')

# Save entire model
torch.save(model, 'complete_model.pt')

# Save training checkpoint
checkpoint = {
    'model_state_dict': model.state_dict(),
    'optimizer_state_dict': optimizer.state_dict(),
    'epoch': epoch,
    'loss': loss,
    'accuracy': accuracy
}
torch.save(checkpoint, 'checkpoint.pt')

Loading Models

# Load state dict (preferred method)
model = SimpleNet(784, 128, 10)
model.load_state_dict(torch.load('model_weights.pt'))
model.eval()

# Load entire model
model = torch.load('complete_model.pt')
model.eval()

# Load checkpoint
checkpoint = torch.load('checkpoint.pt')
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']

Production Deployment with TorchScript

# TorchScript for production deployment
import torch.jit

# Create traced model
example_input = torch.randn(1, 784)
traced_model = torch.jit.trace(model, example_input)

# Save traced model
traced_model.save('traced_model.pt')

# Load and use traced model
loaded_traced = torch.jit.load('traced_model.pt')
loaded_traced.eval()

# Alternative: Script the model
scripted_model = torch.jit.script(model)
scripted_model.save('scripted_model.pt')

Advanced Features

Custom Serialization

class CustomModel(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layers = nn.ModuleList([
            nn.Linear(config['input_size'], config['hidden_size']),
            nn.ReLU(),
            nn.Linear(config['hidden_size'], config['output_size'])
        ])
    
    def forward(self, x):
        for layer in self.layers:
            x = layer(x)
        return x
    
    def save_model(self, filepath):
        """Custom save method with configuration"""
        save_dict = {
            'model_state_dict': self.state_dict(),
            'model_config': self.config,
            'pytorch_version': torch.__version__,
            'timestamp': torch.tensor(time.time())
        }
        torch.save(save_dict, filepath)
    
    @classmethod
    def load_model(cls, filepath):
        """Custom load method"""
        save_dict = torch.load(filepath)
        model = cls(save_dict['model_config'])
        model.load_state_dict(save_dict['model_state_dict'])
        return model, save_dict

# Usage
config = {'input_size': 784, 'hidden_size': 128, 'output_size': 10}
model = CustomModel(config)
model.save_model('custom_model.pt')

# Load later
loaded_model, metadata = CustomModel.load_model('custom_model.pt')

Distributed Training Checkpoints

import torch.distributed as dist

def save_checkpoint(model, optimizer, epoch, loss, filepath, rank=0):
    """Save checkpoint in distributed training"""
    if rank == 0:  # Only save on main process
        checkpoint = {
            'model_state_dict': model.module.state_dict() if hasattr(model, 'module') else model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'epoch': epoch,
            'loss': loss,
            'rng_state': torch.get_rng_state(),
            'cuda_rng_state': torch.cuda.get_rng_state_all()
        }
        torch.save(checkpoint, filepath)

def load_checkpoint(model, optimizer, filepath, device):
    """Load checkpoint for distributed training"""
    checkpoint = torch.load(filepath, map_location=device)
    
    model.load_state_dict(checkpoint['model_state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    
    # Restore random states
    torch.set_rng_state(checkpoint['rng_state'])
    if torch.cuda.is_available():
        torch.cuda.set_rng_state_all(checkpoint['cuda_rng_state'])
    
    return checkpoint['epoch'], checkpoint['loss']

Model Optimization and Compression

Model Quantization

# Quantization for model compression
import torch.quantization

# Prepare model for quantization
model.eval()
model_fused = torch.quantization.fuse_modules(model, [['conv', 'bn', 'relu']])

# Set quantization config
model_fused.qconfig = torch.quantization.get_default_qconfig('fbgemm')

# Prepare for quantization
model_prepared = torch.quantization.prepare(model_fused)

# Calibrate with representative data
with torch.no_grad():
    for data, _ in calibration_loader:
        model_prepared(data)

# Convert to quantized model
model_quantized = torch.quantization.convert(model_prepared)

# Save quantized model
torch.save(model_quantized.state_dict(), 'quantized_model.pt')

# Compare sizes
original_size = os.path.getsize('original_model.pt')
quantized_size = os.path.getsize('quantized_model.pt')
print(f"Size reduction: {(1 - quantized_size/original_size)*100:.1f}%")

Model Pruning

import torch.nn.utils.prune as prune

# Structured pruning
def prune_model(model, amount=0.2):
    """Apply structured pruning to reduce model size"""
    for name, module in model.named_modules():
        if isinstance(module, nn.Linear):
            prune.l1_unstructured(module, name='weight', amount=amount)
        elif isinstance(module, nn.Conv2d):
            prune.l1_unstructured(module, name='weight', amount=amount)
    
    return model

# Apply pruning
pruned_model = prune_model(model, amount=0.3)

# Make pruning permanent
for module in pruned_model.modules():
    if hasattr(module, 'weight_mask'):
        prune.remove(module, 'weight')

# Save pruned model
torch.save(pruned_model.state_dict(), 'pruned_model.pt')

Cross-Platform Compatibility

ONNX Export

import torch.onnx

# Export PyTorch model to ONNX format
def export_to_onnx(model, dummy_input, onnx_path):
    """Export PyTorch model to ONNX for cross-platform deployment"""
    model.eval()
    
    torch.onnx.export(
        model,                          # Model to export
        dummy_input,                    # Model input
        onnx_path,                      # Output file path
        export_params=True,             # Store trained parameters
        opset_version=11,               # ONNX version
        do_constant_folding=True,       # Optimize constant folding
        input_names=['input'],          # Input tensor name
        output_names=['output'],        # Output tensor name
        dynamic_axes={                  # Dynamic axes
            'input': {0: 'batch_size'},
            'output': {0: 'batch_size'}
        }
    )

# Usage
dummy_input = torch.randn(1, 3, 224, 224)
export_to_onnx(model, dummy_input, 'model.onnx')

Mobile Deployment

# Optimize for mobile deployment
from torch.utils.mobile_optimizer import optimize_for_mobile

# Create traced model
traced_model = torch.jit.trace(model, example_input)

# Optimize for mobile
mobile_model = optimize_for_mobile(traced_model)

# Save mobile-optimized model
mobile_model._save_for_lite_interpreter('mobile_model.ptl')

# For iOS/Android deployment
mobile_model.save('mobile_model.pt')

File Analysis and Debugging

Model Inspection

def analyze_pytorch_file(filepath):
    """Analyze PyTorch file contents"""
    try:
        # Load file
        data = torch.load(filepath, map_location='cpu')
        
        print(f"File: {filepath}")
        print(f"File size: {os.path.getsize(filepath) / 1024 / 1024:.2f} MB")
        print(f"Data type: {type(data)}")
        
        if isinstance(data, dict):
            print(f"Keys: {list(data.keys())}")
            
            # Analyze model state dict
            if 'model_state_dict' in data:
                state_dict = data['model_state_dict']
                print(f"Model parameters: {len(state_dict)}")
                
                total_params = 0
                for name, param in state_dict.items():
                    param_count = param.numel()
                    total_params += param_count
                    print(f"  {name}: {param.shape} ({param_count:,} params)")
                
                print(f"Total parameters: {total_params:,}")
                print(f"Model size estimate: {total_params * 4 / 1024 / 1024:.2f} MB (float32)")
            
            # Check for other components
            for key in ['optimizer_state_dict', 'epoch', 'loss']:
                if key in data:
                    print(f"{key}: {data[key]}")
        
        elif hasattr(data, 'state_dict'):
            # Direct model object
            state_dict = data.state_dict()
            print(f"Model class: {data.__class__.__name__}")
            print(f"Parameters: {sum(p.numel() for p in data.parameters()):,}")
            
    except Exception as e:
        print(f"Error analyzing file: {e}")

# Usage
analyze_pytorch_file('model.pt')

Version Compatibility

def check_compatibility(filepath):
    """Check PyTorch version compatibility"""
    try:
        # Try loading with current PyTorch version
        data = torch.load(filepath, map_location='cpu')
        
        # Check if version info is available
        if isinstance(data, dict) and 'pytorch_version' in data:
            saved_version = data['pytorch_version']
            current_version = torch.__version__
            
            print(f"Saved with PyTorch: {saved_version}")
            print(f"Current PyTorch: {current_version}")
            
            if saved_version != current_version:
                print("⚠️  Version mismatch detected")
                print("Consider testing compatibility or re-saving with current version")
        
        return True
        
    except Exception as e:
        print(f"Compatibility issue: {e}")
        return False

check_compatibility('old_model.pt')

Security Considerations

Safe Loading

import pickle

def safe_load_pytorch(filepath, allowed_classes=None):
    """Safely load PyTorch files with class restrictions"""
    
    class RestrictedUnpickler(pickle.Unpickler):
        def find_class(self, module, name):
            # Only allow specific classes
            if allowed_classes is None:
                allowed_classes = {
                    'torch._utils', 'torch.nn.modules',
                    'torch.nn.parameter', 'collections'
                }
            
            if any(module.startswith(allowed) for allowed in allowed_classes):
                return super().find_class(module, name)
            
            raise pickle.UnpicklingError(f"Forbidden class: {module}.{name}")
    
    with open(filepath, 'rb') as f:
        return RestrictedUnpickler(f).load()

# Usage for untrusted files
try:
    safe_data = safe_load_pytorch('untrusted_model.pt')
    print("File loaded safely")
except Exception as e:
    print(f"Security check failed: {e}")

Model Verification

def verify_model_integrity(filepath, expected_hash=None):
    """Verify model file integrity"""
    import hashlib
    
    # Calculate file hash
    with open(filepath, 'rb') as f:
        file_hash = hashlib.sha256(f.read()).hexdigest()
    
    print(f"File hash: {file_hash}")
    
    if expected_hash:
        if file_hash == expected_hash:
            print("✅ File integrity verified")
            return True
        else:
            print("❌ File integrity check failed")
            return False
    
    return file_hash

# Usage
verify_model_integrity('model.pt', 'expected_hash_here')

Best Practices

File Organization

  1. Naming Conventions: Use descriptive names with version/date info
  2. Directory Structure: Organize by project, model type, and version
  3. Metadata: Include model configuration and training details
  4. Documentation: Maintain model cards and usage instructions

Performance Optimization

  • State Dict Saving: Prefer state_dict over entire model saving
  • CPU Loading: Use map_location='cpu' for cross-device compatibility
  • Memory Management: Use torch.cuda.empty_cache() after loading large models
  • Lazy Loading: Load only required parts for inference

Production Deployment

  • TorchScript: Use for production environments
  • Model Validation: Verify model outputs after loading
  • Error Handling: Implement robust error handling for model loading
  • Version Control: Track model versions and dependencies

PyTorch files are fundamental to modern machine learning workflows, providing flexible serialization for models, training states, and tensor data while supporting advanced features like quantization, pruning, and cross-platform deployment.

AI-Powered PYTORCH File Analysis

🔍

Instant Detection

Quickly identify PyTorch files with high accuracy using Google's advanced Magika AI technology.

🛡️

Security Analysis

Analyze file structure and metadata to ensure the file is legitimate and safe to use.

📊

Detailed Information

Get comprehensive details about file type, MIME type, and other technical specifications.

🔒

Privacy First

All analysis happens in your browser - no files are uploaded to our servers.

Related File Types

Explore other file types in the Data category and discover more formats:

Start Analyzing PYTORCH Files Now

Use our free AI-powered tool to detect and analyze PyTorch files instantly with Google's Magika technology.

Try File Detection Tool