PYTORCH PyTorch
AI-powered detection and analysis of PyTorch files.
Instant PYTORCH File Detection
Use our advanced AI-powered tool to instantly detect and analyze PyTorch files with precision and speed.
File Information
PyTorch
Data
.pt, .pth
application/octet-stream
PyTorch File Format
What is a PyTorch file?
A PyTorch file contains serialized data from the PyTorch deep learning framework, typically storing trained neural network models, tensors, optimizers, or other machine learning artifacts. These files use Python's pickle protocol for serialization and are essential for saving, loading, and sharing machine learning models and training states.
File Extensions
.pt
(PyTorch model/tensor file).pth
(PyTorch model/checkpoint file).bin
(Binary model file, sometimes used)
MIME Type
application/octet-stream
History and Development
PyTorch was developed by Facebook's AI Research lab (FAIR) and released as open source in 2017. The file format evolved alongside the framework to support increasingly complex model architectures and training workflows.
Timeline
- 2017: PyTorch 1.0 released with basic serialization
- 2018: Improved model serialization and JIT compilation
- 2019: TorchScript for production deployment
- 2020: Enhanced checkpoint system and distributed training support
- 2021: Mobile and edge deployment optimizations
- Present: Continued evolution with modern AI architectures
Technical Specifications
File Structure
PyTorch files use Python's pickle protocol with additional metadata:
# Basic structure of a PyTorch file
{
'model_state_dict': OrderedDict(), # Model parameters
'optimizer_state_dict': dict(), # Optimizer state
'epoch': int, # Training epoch
'loss': float, # Training loss
'hyperparameters': dict(), # Model configuration
'metadata': dict() # Additional information
}
Serialization Methods
PyTorch provides several serialization approaches:
- State Dict Saving: Save only model parameters
- Entire Model Saving: Save model architecture and parameters
- Checkpoint Saving: Save complete training state
- JIT Script Saving: Save optimized models for production
Common Use Cases
Model Deployment
import torch
import torch.nn as nn
# Define a simple neural network
class SimpleNet(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(SimpleNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
# Create and train model
model = SimpleNet(784, 128, 10)
# ... training code ...
# Save state dict (recommended approach)
torch.save(model.state_dict(), 'model_weights.pt')
# Save entire model
torch.save(model, 'complete_model.pt')
# Save training checkpoint
checkpoint = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch,
'loss': loss,
'accuracy': accuracy
}
torch.save(checkpoint, 'checkpoint.pt')
Loading Models
# Load state dict (preferred method)
model = SimpleNet(784, 128, 10)
model.load_state_dict(torch.load('model_weights.pt'))
model.eval()
# Load entire model
model = torch.load('complete_model.pt')
model.eval()
# Load checkpoint
checkpoint = torch.load('checkpoint.pt')
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
Production Deployment with TorchScript
# TorchScript for production deployment
import torch.jit
# Create traced model
example_input = torch.randn(1, 784)
traced_model = torch.jit.trace(model, example_input)
# Save traced model
traced_model.save('traced_model.pt')
# Load and use traced model
loaded_traced = torch.jit.load('traced_model.pt')
loaded_traced.eval()
# Alternative: Script the model
scripted_model = torch.jit.script(model)
scripted_model.save('scripted_model.pt')
Advanced Features
Custom Serialization
class CustomModel(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layers = nn.ModuleList([
nn.Linear(config['input_size'], config['hidden_size']),
nn.ReLU(),
nn.Linear(config['hidden_size'], config['output_size'])
])
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
def save_model(self, filepath):
"""Custom save method with configuration"""
save_dict = {
'model_state_dict': self.state_dict(),
'model_config': self.config,
'pytorch_version': torch.__version__,
'timestamp': torch.tensor(time.time())
}
torch.save(save_dict, filepath)
@classmethod
def load_model(cls, filepath):
"""Custom load method"""
save_dict = torch.load(filepath)
model = cls(save_dict['model_config'])
model.load_state_dict(save_dict['model_state_dict'])
return model, save_dict
# Usage
config = {'input_size': 784, 'hidden_size': 128, 'output_size': 10}
model = CustomModel(config)
model.save_model('custom_model.pt')
# Load later
loaded_model, metadata = CustomModel.load_model('custom_model.pt')
Distributed Training Checkpoints
import torch.distributed as dist
def save_checkpoint(model, optimizer, epoch, loss, filepath, rank=0):
"""Save checkpoint in distributed training"""
if rank == 0: # Only save on main process
checkpoint = {
'model_state_dict': model.module.state_dict() if hasattr(model, 'module') else model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch,
'loss': loss,
'rng_state': torch.get_rng_state(),
'cuda_rng_state': torch.cuda.get_rng_state_all()
}
torch.save(checkpoint, filepath)
def load_checkpoint(model, optimizer, filepath, device):
"""Load checkpoint for distributed training"""
checkpoint = torch.load(filepath, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# Restore random states
torch.set_rng_state(checkpoint['rng_state'])
if torch.cuda.is_available():
torch.cuda.set_rng_state_all(checkpoint['cuda_rng_state'])
return checkpoint['epoch'], checkpoint['loss']
Model Optimization and Compression
Model Quantization
# Quantization for model compression
import torch.quantization
# Prepare model for quantization
model.eval()
model_fused = torch.quantization.fuse_modules(model, [['conv', 'bn', 'relu']])
# Set quantization config
model_fused.qconfig = torch.quantization.get_default_qconfig('fbgemm')
# Prepare for quantization
model_prepared = torch.quantization.prepare(model_fused)
# Calibrate with representative data
with torch.no_grad():
for data, _ in calibration_loader:
model_prepared(data)
# Convert to quantized model
model_quantized = torch.quantization.convert(model_prepared)
# Save quantized model
torch.save(model_quantized.state_dict(), 'quantized_model.pt')
# Compare sizes
original_size = os.path.getsize('original_model.pt')
quantized_size = os.path.getsize('quantized_model.pt')
print(f"Size reduction: {(1 - quantized_size/original_size)*100:.1f}%")
Model Pruning
import torch.nn.utils.prune as prune
# Structured pruning
def prune_model(model, amount=0.2):
"""Apply structured pruning to reduce model size"""
for name, module in model.named_modules():
if isinstance(module, nn.Linear):
prune.l1_unstructured(module, name='weight', amount=amount)
elif isinstance(module, nn.Conv2d):
prune.l1_unstructured(module, name='weight', amount=amount)
return model
# Apply pruning
pruned_model = prune_model(model, amount=0.3)
# Make pruning permanent
for module in pruned_model.modules():
if hasattr(module, 'weight_mask'):
prune.remove(module, 'weight')
# Save pruned model
torch.save(pruned_model.state_dict(), 'pruned_model.pt')
Cross-Platform Compatibility
ONNX Export
import torch.onnx
# Export PyTorch model to ONNX format
def export_to_onnx(model, dummy_input, onnx_path):
"""Export PyTorch model to ONNX for cross-platform deployment"""
model.eval()
torch.onnx.export(
model, # Model to export
dummy_input, # Model input
onnx_path, # Output file path
export_params=True, # Store trained parameters
opset_version=11, # ONNX version
do_constant_folding=True, # Optimize constant folding
input_names=['input'], # Input tensor name
output_names=['output'], # Output tensor name
dynamic_axes={ # Dynamic axes
'input': {0: 'batch_size'},
'output': {0: 'batch_size'}
}
)
# Usage
dummy_input = torch.randn(1, 3, 224, 224)
export_to_onnx(model, dummy_input, 'model.onnx')
Mobile Deployment
# Optimize for mobile deployment
from torch.utils.mobile_optimizer import optimize_for_mobile
# Create traced model
traced_model = torch.jit.trace(model, example_input)
# Optimize for mobile
mobile_model = optimize_for_mobile(traced_model)
# Save mobile-optimized model
mobile_model._save_for_lite_interpreter('mobile_model.ptl')
# For iOS/Android deployment
mobile_model.save('mobile_model.pt')
File Analysis and Debugging
Model Inspection
def analyze_pytorch_file(filepath):
"""Analyze PyTorch file contents"""
try:
# Load file
data = torch.load(filepath, map_location='cpu')
print(f"File: {filepath}")
print(f"File size: {os.path.getsize(filepath) / 1024 / 1024:.2f} MB")
print(f"Data type: {type(data)}")
if isinstance(data, dict):
print(f"Keys: {list(data.keys())}")
# Analyze model state dict
if 'model_state_dict' in data:
state_dict = data['model_state_dict']
print(f"Model parameters: {len(state_dict)}")
total_params = 0
for name, param in state_dict.items():
param_count = param.numel()
total_params += param_count
print(f" {name}: {param.shape} ({param_count:,} params)")
print(f"Total parameters: {total_params:,}")
print(f"Model size estimate: {total_params * 4 / 1024 / 1024:.2f} MB (float32)")
# Check for other components
for key in ['optimizer_state_dict', 'epoch', 'loss']:
if key in data:
print(f"{key}: {data[key]}")
elif hasattr(data, 'state_dict'):
# Direct model object
state_dict = data.state_dict()
print(f"Model class: {data.__class__.__name__}")
print(f"Parameters: {sum(p.numel() for p in data.parameters()):,}")
except Exception as e:
print(f"Error analyzing file: {e}")
# Usage
analyze_pytorch_file('model.pt')
Version Compatibility
def check_compatibility(filepath):
"""Check PyTorch version compatibility"""
try:
# Try loading with current PyTorch version
data = torch.load(filepath, map_location='cpu')
# Check if version info is available
if isinstance(data, dict) and 'pytorch_version' in data:
saved_version = data['pytorch_version']
current_version = torch.__version__
print(f"Saved with PyTorch: {saved_version}")
print(f"Current PyTorch: {current_version}")
if saved_version != current_version:
print("⚠️ Version mismatch detected")
print("Consider testing compatibility or re-saving with current version")
return True
except Exception as e:
print(f"Compatibility issue: {e}")
return False
check_compatibility('old_model.pt')
Security Considerations
Safe Loading
import pickle
def safe_load_pytorch(filepath, allowed_classes=None):
"""Safely load PyTorch files with class restrictions"""
class RestrictedUnpickler(pickle.Unpickler):
def find_class(self, module, name):
# Only allow specific classes
if allowed_classes is None:
allowed_classes = {
'torch._utils', 'torch.nn.modules',
'torch.nn.parameter', 'collections'
}
if any(module.startswith(allowed) for allowed in allowed_classes):
return super().find_class(module, name)
raise pickle.UnpicklingError(f"Forbidden class: {module}.{name}")
with open(filepath, 'rb') as f:
return RestrictedUnpickler(f).load()
# Usage for untrusted files
try:
safe_data = safe_load_pytorch('untrusted_model.pt')
print("File loaded safely")
except Exception as e:
print(f"Security check failed: {e}")
Model Verification
def verify_model_integrity(filepath, expected_hash=None):
"""Verify model file integrity"""
import hashlib
# Calculate file hash
with open(filepath, 'rb') as f:
file_hash = hashlib.sha256(f.read()).hexdigest()
print(f"File hash: {file_hash}")
if expected_hash:
if file_hash == expected_hash:
print("✅ File integrity verified")
return True
else:
print("❌ File integrity check failed")
return False
return file_hash
# Usage
verify_model_integrity('model.pt', 'expected_hash_here')
Best Practices
File Organization
- Naming Conventions: Use descriptive names with version/date info
- Directory Structure: Organize by project, model type, and version
- Metadata: Include model configuration and training details
- Documentation: Maintain model cards and usage instructions
Performance Optimization
- State Dict Saving: Prefer state_dict over entire model saving
- CPU Loading: Use
map_location='cpu'
for cross-device compatibility - Memory Management: Use
torch.cuda.empty_cache()
after loading large models - Lazy Loading: Load only required parts for inference
Production Deployment
- TorchScript: Use for production environments
- Model Validation: Verify model outputs after loading
- Error Handling: Implement robust error handling for model loading
- Version Control: Track model versions and dependencies
PyTorch files are fundamental to modern machine learning workflows, providing flexible serialization for models, training states, and tensor data while supporting advanced features like quantization, pruning, and cross-platform deployment.
AI-Powered PYTORCH File Analysis
Instant Detection
Quickly identify PyTorch files with high accuracy using Google's advanced Magika AI technology.
Security Analysis
Analyze file structure and metadata to ensure the file is legitimate and safe to use.
Detailed Information
Get comprehensive details about file type, MIME type, and other technical specifications.
Privacy First
All analysis happens in your browser - no files are uploaded to our servers.
Related File Types
Explore other file types in the Data category and discover more formats:
Start Analyzing PYTORCH Files Now
Use our free AI-powered tool to detect and analyze PyTorch files instantly with Google's Magika technology.
⚡ Try File Detection Tool