H5 Hierarchical Data Format v5
AI-powered detection and analysis of Hierarchical Data Format v5 files.
Instant H5 File Detection
Use our advanced AI-powered tool to instantly detect and analyze Hierarchical Data Format v5 files with precision and speed.
File Information
Hierarchical Data Format v5
Data
.h5, .hdf5
application/x-hdf
H5 (HDF5) File Format
Overview
The H5 format, also known as HDF5 (Hierarchical Data Format version 5), is a high-performance data management and storage format designed for storing and organizing large amounts of numerical data. Developed by the HDF Group, HDF5 is widely used in scientific computing, engineering, and data analysis applications for its ability to handle complex, heterogeneous data efficiently.
Technical Details
File Characteristics
- Extension:
.h5
,.hdf5
- MIME Type:
application/x-hdf
- Category: Data
- Format Type: Binary hierarchical data format
Key Features
- Hierarchical Structure: Tree-like data organization
- Cross-Platform: Works across different operating systems and architectures
- Self-Describing: Metadata embedded within the file
- Extensible: Support for custom data types and attributes
- High Performance: Optimized for large-scale data operations
File Structure
Hierarchical Organization
HDF5 File Structure:
├── Root Group (/)
│ ├── Dataset1
│ ├── Dataset2
│ ├── Group1/
│ │ ├── SubDataset1
│ │ ├── SubDataset2
│ │ └── NestedGroup/
│ │ └── DeepDataset
│ ├── Group2/
│ │ ├── Array3D
│ │ └── TimeSeries
│ └── Attributes
│ ├── title: "Experimental Data"
│ ├── version: "1.0"
│ └── created: "2024-01-15"
Core Components
- Groups: Container objects that organize datasets
- Datasets: Multidimensional arrays of data
- Attributes: Metadata attached to groups or datasets
- Dataspaces: Define dimensionality and size of datasets
- Datatypes: Define data format and interpretation
Data Types and Structures
Native Data Types
import h5py
import numpy as np
# Create HDF5 file with various data types
with h5py.File('example.h5', 'w') as f:
# Integer datasets
f.create_dataset('integers', data=np.arange(100, dtype=np.int32))
# Float datasets
f.create_dataset('floats', data=np.random.random(1000).astype(np.float64))
# String datasets
string_data = np.array([b'hello', b'world', b'hdf5'], dtype='S10')
f.create_dataset('strings', data=string_data)
# Boolean datasets
f.create_dataset('booleans', data=np.array([True, False, True]))
# Complex numbers
complex_data = np.array([1+2j, 3+4j, 5+6j])
f.create_dataset('complex', data=complex_data)
Multidimensional Arrays
# 3D array example
with h5py.File('arrays.h5', 'w') as f:
# Create 3D dataset
data_3d = np.random.random((100, 50, 25))
dataset = f.create_dataset('3d_array', data=data_3d)
# Add attributes
dataset.attrs['description'] = 'Random 3D array'
dataset.attrs['units'] = 'meters'
dataset.attrs['created_by'] = 'simulation_v1.0'
# Create resizable dataset
resizable = f.create_dataset('expandable',
shape=(100, 100),
maxshape=(None, 100),
dtype=np.float32)
# Create chunked dataset for better performance
chunked = f.create_dataset('chunked_data',
shape=(1000, 1000),
chunks=(100, 100),
dtype=np.float64)
Compound Data Types
# Create compound data type (like C struct)
dt = np.dtype([('name', 'S20'),
('age', 'i4'),
('weight', 'f8'),
('active', '?')])
# Sample data
people = np.array([('Alice', 25, 65.5, True),
('Bob', 30, 75.0, False),
('Charlie', 35, 80.2, True)], dtype=dt)
with h5py.File('compound.h5', 'w') as f:
f.create_dataset('people', data=people)
Groups and Organization
Creating Hierarchical Structure
with h5py.File('organized.h5', 'w') as f:
# Create groups
experiment = f.create_group('experiment_001')
raw_data = experiment.create_group('raw_data')
processed = experiment.create_group('processed')
# Add datasets to groups
raw_data.create_dataset('temperature', data=np.random.random(1000))
raw_data.create_dataset('pressure', data=np.random.random(1000))
raw_data.create_dataset('timestamps', data=np.arange(1000))
# Processed data
processed.create_dataset('filtered_temp', data=np.random.random(800))
processed.create_dataset('statistics', data=np.array([25.5, 1.2, 30.1]))
# Add metadata
experiment.attrs['date'] = '2024-01-15'
experiment.attrs['researcher'] = 'Dr. Smith'
experiment.attrs['equipment'] = 'Sensor Array v2.1'
Navigation and Access
# Reading hierarchical data
with h5py.File('organized.h5', 'r') as f:
# Access by path
temp_data = f['experiment_001/raw_data/temperature'][:]
# Navigate using groups
exp = f['experiment_001']
raw = exp['raw_data']
temperature = raw['temperature']
# List contents
print("Root contents:", list(f.keys()))
print("Experiment contents:", list(exp.keys()))
# Access attributes
print("Date:", exp.attrs['date'])
print("Researcher:", exp.attrs['researcher'])
Advanced Features
Compression and Filters
import h5py
import numpy as np
with h5py.File('compressed.h5', 'w') as f:
data = np.random.random((1000, 1000))
# GZIP compression
f.create_dataset('gzip_data', data=data,
compression='gzip', compression_opts=9)
# SZIP compression
f.create_dataset('szip_data', data=data,
compression='szip')
# LZF compression (fast)
f.create_dataset('lzf_data', data=data,
compression='lzf')
# Custom chunking and compression
f.create_dataset('optimized', data=data,
chunks=True,
compression='gzip',
compression_opts=6,
shuffle=True,
fletcher32=True)
Parallel I/O
# Parallel HDF5 with MPI
import h5py
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
# Parallel file access
with h5py.File('parallel.h5', 'w', driver='mpio', comm=comm) as f:
# Each process writes to different section
total_size = 1000
local_size = total_size // size
start = rank * local_size
end = start + local_size
# Create dataset collectively
dset = f.create_dataset('parallel_data', (total_size,), dtype='f')
# Write local data
local_data = np.random.random(local_size)
dset[start:end] = local_data
External Links
# Create external links between files
with h5py.File('main.h5', 'w') as f:
# Create local data
f.create_dataset('local_data', data=np.arange(100))
# Link to external file
f['external_link'] = h5py.ExternalLink('external.h5', '/dataset')
# Create the external file
with h5py.File('external.h5', 'w') as f:
f.create_dataset('dataset', data=np.random.random(50))
# Access through link
with h5py.File('main.h5', 'r') as f:
external_data = f['external_link'][:]
Scientific Computing Applications
Time Series Data
# Store time series with metadata
import pandas as pd
import h5py
# Generate sample time series
dates = pd.date_range('2024-01-01', periods=365, freq='D')
values = np.cumsum(np.random.randn(365))
with h5py.File('timeseries.h5', 'w') as f:
# Store timestamps as Unix time
timestamps = f.create_dataset('timestamps',
data=[d.timestamp() for d in dates])
# Store values
values_ds = f.create_dataset('values', data=values)
# Add metadata
f.attrs['start_date'] = dates[0].isoformat()
f.attrs['end_date'] = dates[-1].isoformat()
f.attrs['frequency'] = 'daily'
f.attrs['units'] = 'arbitrary'
timestamps.attrs['units'] = 'seconds since epoch'
values_ds.attrs['description'] = 'Random walk time series'
Image Stack Storage
# Store stack of images
def store_image_stack(filename, images):
with h5py.File(filename, 'w') as f:
# Store image stack
image_stack = f.create_dataset('images',
data=images,
chunks=True,
compression='gzip')
# Add metadata
f.attrs['num_images'] = images.shape[0]
f.attrs['image_height'] = images.shape[1]
f.attrs['image_width'] = images.shape[2]
f.attrs['bit_depth'] = str(images.dtype)
# Per-image metadata
metadata_group = f.create_group('metadata')
for i in range(images.shape[0]):
img_meta = metadata_group.create_group(f'image_{i:03d}')
img_meta.attrs['timestamp'] = f'2024-01-{i+1:02d}'
img_meta.attrs['exposure_time'] = 0.1
img_meta.attrs['gain'] = 1.0
# Usage
image_data = np.random.randint(0, 256, (100, 512, 512), dtype=np.uint8)
store_image_stack('images.h5', image_data)
Simulation Results
# Store complex simulation data
with h5py.File('simulation.h5', 'w') as f:
# Simulation parameters
params = f.create_group('parameters')
params.attrs['simulation_type'] = 'molecular_dynamics'
params.attrs['timestep'] = 0.001
params.attrs['total_steps'] = 100000
params.attrs['temperature'] = 300.0
params.attrs['pressure'] = 1.0
# Initial conditions
initial = f.create_group('initial_conditions')
initial.create_dataset('positions', data=np.random.random((1000, 3)))
initial.create_dataset('velocities', data=np.random.random((1000, 3)))
# Time evolution data
trajectory = f.create_group('trajectory')
# Store trajectory in chunks (for large simulations)
n_atoms = 1000
n_frames = 1000
positions = trajectory.create_dataset('positions',
shape=(n_frames, n_atoms, 3),
chunks=(100, n_atoms, 3),
compression='gzip',
dtype=np.float32)
# Fill with sample data
for frame in range(0, n_frames, 100):
end_frame = min(frame + 100, n_frames)
chunk_data = np.random.random((end_frame - frame, n_atoms, 3))
positions[frame:end_frame] = chunk_data
# Analysis results
analysis = f.create_group('analysis')
analysis.create_dataset('energy', data=np.random.random(n_frames))
analysis.create_dataset('temperature_profile', data=np.random.random(n_frames))
Performance Optimization
Chunking Strategies
# Optimize chunking for access patterns
with h5py.File('optimized.h5', 'w') as f:
data = np.random.random((10000, 1000))
# Row-wise access optimization
row_chunked = f.create_dataset('row_access',
data=data,
chunks=(1, 1000)) # One row per chunk
# Column-wise access optimization
col_chunked = f.create_dataset('col_access',
data=data,
chunks=(10000, 1)) # One column per chunk
# Balanced chunking
balanced = f.create_dataset('balanced',
data=data,
chunks=(100, 100)) # Square chunks
Memory-Efficient Reading
# Read large datasets efficiently
def process_large_dataset(filename, dataset_name, chunk_size=1000):
with h5py.File(filename, 'r') as f:
dataset = f[dataset_name]
total_rows = dataset.shape[0]
results = []
for start in range(0, total_rows, chunk_size):
end = min(start + chunk_size, total_rows)
chunk = dataset[start:end]
# Process chunk
result = np.mean(chunk, axis=1)
results.append(result)
return np.concatenate(results)
Integration with Data Science
Pandas Integration
import pandas as pd
# Store DataFrame in HDF5
df = pd.DataFrame({
'A': np.random.randn(1000),
'B': np.random.randn(1000),
'C': pd.date_range('2024-01-01', periods=1000, freq='H')
})
# Save to HDF5 (PyTables format)
df.to_hdf('pandas_data.h5', key='df', mode='w')
# Read back
df_loaded = pd.read_hdf('pandas_data.h5', key='df')
NumPy Integration
# Direct NumPy array storage
arrays = {
'array1': np.random.random((1000, 500)),
'array2': np.random.random((2000, 300)),
'array3': np.random.random((500, 1000))
}
with h5py.File('numpy_arrays.h5', 'w') as f:
for name, array in arrays.items():
f.create_dataset(name, data=array, compression='gzip')
f[name].attrs['shape'] = array.shape
f[name].attrs['dtype'] = str(array.dtype)
Best Practices
File Organization
- Use logical group hierarchy to organize related data
- Include comprehensive metadata and attributes
- Use meaningful names for groups and datasets
- Document data structure and conventions
Performance Considerations
- Choose appropriate chunk sizes for access patterns
- Use compression for large datasets
- Enable shuffling filter for better compression
- Consider parallel I/O for very large files
Data Integrity
- Use checksums (fletcher32) for critical data
- Implement proper error handling
- Validate data types and ranges
- Maintain backup copies of important files
The H5/HDF5 format provides a robust foundation for scientific data management, enabling efficient storage and access of complex, large-scale datasets while maintaining data integrity and cross-platform compatibility.
AI-Powered H5 File Analysis
Instant Detection
Quickly identify Hierarchical Data Format v5 files with high accuracy using Google's advanced Magika AI technology.
Security Analysis
Analyze file structure and metadata to ensure the file is legitimate and safe to use.
Detailed Information
Get comprehensive details about file type, MIME type, and other technical specifications.
Privacy First
All analysis happens in your browser - no files are uploaded to our servers.
Related File Types
Explore other file types in the Data category and discover more formats:
Start Analyzing H5 Files Now
Use our free AI-powered tool to detect and analyze Hierarchical Data Format v5 files instantly with Google's Magika technology.
⚡ Try File Detection Tool