MATLAB Matlab source

AI-powered detection and analysis of Matlab source files.

📂 Code
🏷️ .m
🎯 text/x-matlab
🔍

Instant MATLAB File Detection

Use our advanced AI-powered tool to instantly detect and analyze Matlab source files with precision and speed.

File Information

File Description

Matlab source

Category

Code

Extensions

.m

MIME Type

text/x-matlab

MATLAB Programming Language

What is a MATLAB file?

A MATLAB (.m) file is a script or function file written in MATLAB (Matrix Laboratory), a high-level programming language and interactive environment designed for numerical computing, data analysis, and algorithm development. MATLAB files contain mathematical computations, data visualization commands, and engineering algorithms that leverage MATLAB's powerful matrix operations and extensive toolbox ecosystem for scientific and engineering applications.

More Information

MATLAB was developed by Cleve Moler in the late 1970s while he was a professor at the University of New Mexico. Originally created as a simple interface to LINPACK and EISPACK Fortran libraries, MATLAB evolved into a comprehensive technical computing platform. MathWorks was founded in 1984 to develop and commercialize MATLAB, which has since become an industry standard in engineering, scientific research, and academic institutions worldwide.

MATLAB's design philosophy centers around matrix operations and vectorized computing, making it exceptionally powerful for numerical analysis, linear algebra, and mathematical modeling. The platform combines a programming language with a desktop environment tuned for iterative analysis and design processes. MATLAB's extensive collection of specialized toolboxes covers virtually every engineering and scientific discipline, from signal processing and control systems to machine learning and financial modeling.

MATLAB Format

MATLAB uses a syntax optimized for mathematical operations and matrix manipulation:

Basic Syntax

  • Matrix-centric - Everything is treated as a matrix
  • Vectorized operations - Operations work on entire arrays
  • Functions and scripts - .m files can be scripts or functions
  • Comments - Lines starting with % symbol
  • Semicolon suppression - Semicolon suppresses output display
  • Case sensitivity - Variable and function names are case-sensitive

Key Features

  • Matrix operations - Built-in support for linear algebra
  • Vectorization - Efficient operations on arrays
  • Built-in functions - Comprehensive mathematical function library
  • Toolboxes - Specialized function collections
  • Graphics and visualization - Powerful plotting capabilities
  • Interactive environment - Command window for exploration

Data Types and Structures

  • Numeric arrays - double (default), single, integer types
  • Logical arrays - Boolean data
  • Character arrays - Text and string data
  • Cell arrays - Heterogeneous data containers
  • Structures - Named field containers
  • Tables - Structured data with named variables
  • Categorical arrays - Discrete categories

Example MATLAB Script

%% =====================================================
%% Signal Processing and Analysis Toolbox
%% Purpose: Comprehensive signal analysis and filtering
%% Author: Signal Processing Engineer
%% Date: Created on [date()]
%% =====================================================

%% Clear workspace and set up environment
clear all; close all; clc;

% Set random seed for reproducibility
rng(42);

% Configuration parameters
fs = 1000;              % Sampling frequency (Hz)
T = 2;                  % Duration (seconds)
t = 0:1/fs:T-1/fs;      % Time vector
N = length(t);          % Number of samples

%% Generate test signals
fprintf('Generating test signals...\n');

% Clean sinusoidal signals
f1 = 50;    % Frequency of first component (Hz)
f2 = 120;   % Frequency of second component (Hz)
f3 = 200;   % Frequency of third component (Hz)

% Create composite signal
signal_clean = 2*sin(2*pi*f1*t) + 1.5*sin(2*pi*f2*t) + 0.8*sin(2*pi*f3*t);

% Add noise
noise_level = 0.5;
noise = noise_level * randn(size(t));
signal_noisy = signal_clean + noise;

% Add some non-stationary components
chirp_component = 0.5 * sin(2*pi*(10 + 30*t).*t);  % Frequency sweep
signal_complex = signal_noisy + chirp_component;

%% Signal Analysis Function
function [freq, magnitude, phase] = analyze_spectrum(signal, fs)
    % Compute FFT and frequency domain analysis
    N = length(signal);
    Y = fft(signal);
    P2 = abs(Y/N);
    P1 = P2(1:N/2+1);
    P1(2:end-1) = 2*P1(2:end-1);
    
    freq = fs*(0:(N/2))/N;
    magnitude = P1;
    phase = angle(Y(1:N/2+1));
end

%% Frequency domain analysis
fprintf('Performing frequency domain analysis...\n');

[freq, mag_clean, phase_clean] = analyze_spectrum(signal_clean, fs);
[~, mag_noisy, phase_noisy] = analyze_spectrum(signal_noisy, fs);
[~, mag_complex, phase_complex] = analyze_spectrum(signal_complex, fs);

%% Design and apply filters
fprintf('Designing and applying filters...\n');

% Low-pass filter design (Butterworth)
fc_low = 150;                           % Cutoff frequency
[b_low, a_low] = butter(6, fc_low/(fs/2), 'low');

% Band-pass filter design
fc_band = [40 130];                     % Passband frequencies
[b_band, a_band] = butter(4, fc_band/(fs/2), 'bandpass');

% High-pass filter design
fc_high = 80;                           % Cutoff frequency
[b_high, a_high] = butter(4, fc_high/(fs/2), 'high');

% Apply filters
signal_lowpass = filtfilt(b_low, a_low, signal_complex);
signal_bandpass = filtfilt(b_band, a_band, signal_complex);
signal_highpass = filtfilt(b_high, a_high, signal_complex);

%% Advanced signal processing
fprintf('Applying advanced signal processing techniques...\n');

% Spectrogram analysis
window_size = 128;
overlap = 64;
nfft = 256;

[S, F, T_spec] = spectrogram(signal_complex, window_size, overlap, nfft, fs);
S_magnitude = abs(S);

% Wavelet analysis
wavelet_name = 'db4';
[coeffs, freqs_wav] = cwt(signal_complex, 1:100, wavelet_name, 1/fs);

% Statistical analysis
function stats = compute_signal_stats(signal)
    stats.mean = mean(signal);
    stats.std = std(signal);
    stats.rms = rms(signal);
    stats.peak = max(abs(signal));
    stats.crest_factor = stats.peak / stats.rms;
    stats.skewness = skewness(signal);
    stats.kurtosis = kurtosis(signal);
end

stats_original = compute_signal_stats(signal_complex);
stats_filtered = compute_signal_stats(signal_lowpass);

%% Visualization
fprintf('Creating visualizations...\n');

% Create comprehensive figure
figure('Position', [100, 100, 1400, 900]);

% Time domain plots
subplot(3, 4, 1);
plot(t, signal_clean, 'b-', 'LineWidth', 1.5);
title('Clean Signal');
xlabel('Time (s)'); ylabel('Amplitude');
grid on;

subplot(3, 4, 2);
plot(t, signal_noisy, 'r-', 'LineWidth', 1);
title('Noisy Signal');
xlabel('Time (s)'); ylabel('Amplitude');
grid on;

subplot(3, 4, 3);
plot(t, signal_complex, 'k-', 'LineWidth', 1);
title('Complex Signal');
xlabel('Time (s)'); ylabel('Amplitude');
grid on;

subplot(3, 4, 4);
plot(t, signal_lowpass, 'g-', 'LineWidth', 1.5);
title('Low-pass Filtered');
xlabel('Time (s)'); ylabel('Amplitude');
grid on;

% Frequency domain plots
subplot(3, 4, 5);
semilogx(freq, 20*log10(mag_clean), 'b-', 'LineWidth', 1.5);
title('Clean Signal Spectrum');
xlabel('Frequency (Hz)'); ylabel('Magnitude (dB)');
grid on;

subplot(3, 4, 6);
semilogx(freq, 20*log10(mag_complex), 'k-', 'LineWidth', 1);
title('Complex Signal Spectrum');
xlabel('Frequency (Hz)'); ylabel('Magnitude (dB)');
grid on;

% Filter responses
subplot(3, 4, 7);
[h_low, w_low] = freqz(b_low, a_low, 1024, fs);
plot(w_low, 20*log10(abs(h_low)), 'g-', 'LineWidth', 2);
title('Low-pass Filter Response');
xlabel('Frequency (Hz)'); ylabel('Magnitude (dB)');
grid on;

subplot(3, 4, 8);
[h_band, w_band] = freqz(b_band, a_band, 1024, fs);
plot(w_band, 20*log10(abs(h_band)), 'm-', 'LineWidth', 2);
title('Band-pass Filter Response');
xlabel('Frequency (Hz)'); ylabel('Magnitude (dB)');
grid on;

% Spectrogram
subplot(3, 4, 9:10);
imagesc(T_spec, F, 20*log10(S_magnitude));
axis xy;
colorbar;
title('Spectrogram');
xlabel('Time (s)'); ylabel('Frequency (Hz)');

% Wavelet scalogram
subplot(3, 4, 11:12);
imagesc(t, freqs_wav, abs(coeffs));
axis xy;
colorbar;
title('Continuous Wavelet Transform');
xlabel('Time (s)'); ylabel('Frequency (Hz)');

%% Statistical analysis and reporting
fprintf('\n=== SIGNAL ANALYSIS REPORT ===\n');
fprintf('Original Signal Statistics:\n');
fprintf('  Mean: %.4f\n', stats_original.mean);
fprintf('  Standard Deviation: %.4f\n', stats_original.std);
fprintf('  RMS: %.4f\n', stats_original.rms);
fprintf('  Peak: %.4f\n', stats_original.peak);
fprintf('  Crest Factor: %.4f\n', stats_original.crest_factor);
fprintf('  Skewness: %.4f\n', stats_original.skewness);
fprintf('  Kurtosis: %.4f\n', stats_original.kurtosis);

fprintf('\nFiltered Signal Statistics:\n');
fprintf('  Mean: %.4f\n', stats_filtered.mean);
fprintf('  Standard Deviation: %.4f\n', stats_filtered.std);
fprintf('  RMS: %.4f\n', stats_filtered.rms);
fprintf('  Noise Reduction: %.2f dB\n', ...
    20*log10(stats_original.std / stats_filtered.std));

%% Feature extraction
fprintf('\nExtracting signal features...\n');

% Zero crossing rate
zero_crossings = sum(diff(sign(signal_complex)) ~= 0) / length(signal_complex);

% Spectral centroid
spectral_centroid = sum(freq .* mag_complex) / sum(mag_complex);

% Spectral bandwidth
spectral_bandwidth = sqrt(sum(((freq - spectral_centroid).^2) .* mag_complex) / sum(mag_complex));

% Peak detection
[peaks, peak_locations] = findpeaks(signal_complex, 'MinPeakHeight', 0.5, 'MinPeakDistance', 50);

fprintf('Feature Extraction Results:\n');
fprintf('  Zero Crossing Rate: %.4f\n', zero_crossings);
fprintf('  Spectral Centroid: %.2f Hz\n', spectral_centroid);
fprintf('  Spectral Bandwidth: %.2f Hz\n', spectral_bandwidth);
fprintf('  Number of Peaks: %d\n', length(peaks));

%% Save results
fprintf('\nSaving results...\n');

% Create results structure
results = struct();
results.time = t;
results.signals = struct('clean', signal_clean, 'noisy', signal_noisy, ...
                        'complex', signal_complex, 'filtered', signal_lowpass);
results.frequency = freq;
results.spectra = struct('clean', mag_clean, 'complex', mag_complex);
results.filters = struct('lowpass', [b_low; a_low], 'bandpass', [b_band; a_band]);
results.statistics = struct('original', stats_original, 'filtered', stats_filtered);
results.features = struct('zero_crossings', zero_crossings, ...
                         'spectral_centroid', spectral_centroid, ...
                         'spectral_bandwidth', spectral_bandwidth);

% Save to .mat file
save('signal_analysis_results.mat', 'results');

% Export key data to CSV for external analysis
data_export = [t', signal_clean', signal_noisy', signal_complex', signal_lowpass'];
writematrix(data_export, 'signal_data.csv');

% Save figure
saveas(gcf, 'signal_analysis_plots.png');
saveas(gcf, 'signal_analysis_plots.fig');

fprintf('Analysis complete!\n');
fprintf('Files saved:\n');
fprintf('  - signal_analysis_results.mat\n');
fprintf('  - signal_data.csv\n');
fprintf('  - signal_analysis_plots.png\n');
fprintf('  - signal_analysis_plots.fig\n');

%% Function definitions (would typically be in separate files)
function filtered_signal = apply_moving_average(signal, window_size)
    % Apply moving average filter
    kernel = ones(1, window_size) / window_size;
    filtered_signal = conv(signal, kernel, 'same');
end

function snr_db = calculate_snr(signal, noise)
    % Calculate Signal-to-Noise Ratio in dB
    signal_power = mean(signal.^2);
    noise_power = mean(noise.^2);
    snr_db = 10 * log10(signal_power / noise_power);
end

How to work with MATLAB files

MATLAB provides a comprehensive development environment and toolchain:

MATLAB Environment

  • MATLAB Desktop - Integrated development environment
  • Command Window - Interactive command execution
  • Editor - Script and function development
  • Workspace - Variable management and inspection
  • Command History - Track and reuse commands
  • Current Folder - File management and navigation

Development Tools

  • MATLAB Editor - Built-in editor with syntax highlighting
  • Debugger - Step-through debugging with breakpoints
  • Profiler - Performance analysis and optimization
  • Dependency Report - Analyze code dependencies
  • Code Analyzer - Static code analysis and suggestions

MATLAB Toolboxes

  • Signal Processing Toolbox - Digital signal processing
  • Image Processing Toolbox - Image analysis and computer vision
  • Statistics and Machine Learning Toolbox - Statistical analysis
  • Control System Toolbox - Control system design
  • Optimization Toolbox - Mathematical optimization
  • Symbolic Math Toolbox - Symbolic mathematics
  • Parallel Computing Toolbox - Parallel and GPU computing

File Types and Organization

  • Scripts (.m) - Sequence of MATLAB commands
  • Functions (.m) - Reusable code with inputs/outputs
  • Live Scripts (.mlx) - Interactive documents with code and text
  • MAT-files (.mat) - Binary data storage
  • Fig-files (.fig) - MATLAB figure files
  • App files (.mlapp) - MATLAB App Designer applications

Advanced MATLAB Features

MATLAB supports sophisticated programming and analysis:

  • Object-oriented programming - Classes and inheritance
  • Parallel computing - Multi-core and GPU acceleration
  • Code generation - Convert MATLAB to C/C++/HDL
  • Machine learning - Classification, regression, clustering
  • Deep learning - Neural networks and deep learning
  • Simulink integration - Model-based design
  • Hardware connectivity - Interface with instruments and hardware

Visualization and Graphics

MATLAB excels in scientific visualization:

  • 2D plotting - Line plots, scatter plots, bar charts
  • 3D visualization - Surface plots, mesh plots, volume rendering
  • Animation - Dynamic plots and movies
  • Interactive graphics - GUI development and App Designer
  • Publication-quality graphics - LaTeX integration and export
  • Specialized plots - Engineering-specific visualizations

Performance Optimization

MATLAB programming best practices:

  • Vectorization - Use array operations instead of loops
  • Preallocation - Reserve memory for large arrays
  • Profiling - Identify performance bottlenecks
  • Parallel computing - Leverage multiple cores and GPUs
  • Efficient algorithms - Choose appropriate mathematical methods
  • Memory management - Optimize memory usage patterns

Integration and Deployment

MATLAB supports various deployment options:

  • MATLAB Compiler - Create standalone applications
  • MATLAB Coder - Generate C/C++ code
  • GPU Coder - Generate CUDA code for GPUs
  • HDL Coder - Generate hardware description language
  • Web deployment - MATLAB Web App Server
  • Python integration - Call MATLAB from Python and vice versa

Common Use Cases

MATLAB is widely used in:

  • Engineering design - Control systems, signal processing, communications
  • Scientific research - Data analysis, modeling, simulation
  • Image and video processing - Computer vision, medical imaging
  • Financial modeling - Risk analysis, algorithmic trading
  • Machine learning - Predictive modeling, pattern recognition
  • Education - Teaching mathematics, engineering, and science
  • Automotive industry - Vehicle dynamics, autonomous systems
  • Aerospace - Flight control, navigation, mission planning
  • Biomedical engineering - Medical device design, bioinformatics

AI-Powered MATLAB File Analysis

🔍

Instant Detection

Quickly identify Matlab source files with high accuracy using Google's advanced Magika AI technology.

🛡️

Security Analysis

Analyze file structure and metadata to ensure the file is legitimate and safe to use.

📊

Detailed Information

Get comprehensive details about file type, MIME type, and other technical specifications.

🔒

Privacy First

All analysis happens in your browser - no files are uploaded to our servers.

Related File Types

Explore other file types in the Code category and discover more formats:

Start Analyzing MATLAB Files Now

Use our free AI-powered tool to detect and analyze Matlab source files instantly with Google's Magika technology.

Try File Detection Tool